Quasielastic and inelastic neutron scattering investigation of fragile-to-strong crossover in deeply supercooled water confined in nanoporous silica matrices

نویسندگان

  • Li Liu
  • Sow-Hsin Chen
  • Antonio Faraone
  • Chun-Wan Yen
  • Chung-Yuan Mou
  • Alexander I Kolesnikov
  • Eugene Mamontov
  • Juscelino Leao
چکیده

We investigated, using quasi-elastic and inelastic neutron scattering, the slow single-particle dynamics of water confined in laboratory synthesized nanoporous silica matrices, MCM-41-S, with pore diameters ranging from 10 to 18 Å. Inside the pores of these matrices, the freezing process of water is strongly inhibited down to 160 K. We analysed the quasi-elastic part of the neutron scattering spectra with a relaxing-cage model and determined the temperature and pressure dependence of the Q-dependent translational relaxation time and its stretch exponent β for the time dependence of the self-intermediate scattering function. The calculated Q-independent average translational relaxation time shows a fragile-to-strong (FS) dynamic crossover for pressures lower than 1600 bar. Above this pressure, it is no longer possible to discern the characteristic feature of the FS crossover. Identification of this end point with the predicted second low-temperature critical point of water is discussed. A subsequent inelastic neutron scattering investigation of the librational band of water indicates that this FS dynamic crossover is associated with a structural change of the hydrogen-bond cage surrounding a typical water molecule from a denser liquid-like configuration to a less-dense ice-like open structure. (Some figures in this article are in colour only in the electronic version) 6 Author to whom any correspondence should be addressed. 0953-8984/06/362261+24$30.00 © 2006 IOP Publishing Ltd Printed in the UK S2261

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pressure dependence of fragile-to-strong transition and a possible second critical point in supercooled confined water.

By confining water in nanopores of silica glass, we can bypass the crystallization and study the pressure effect on the dynamical behavior in deeply supercooled state using neutron scattering. We observe a clear evidence of a cusplike fragile-to-strong (FS) dynamic transition. Here we show that the transition temperature decreases steadily with an increasing pressure, until it intersects the ho...

متن کامل

Crossover from localized to diffusive water dynamics in carbon nanohorns: A comprehensive quasielastic neutron-scattering analysis.

Incoherent neutron scattering by water confined in carbon nanohorns was measured with the backscattering spectrometer SPHERES and analyzed in exemplary breadth and depth. Quasielastic spectra admit δ-plus-Kohlrausch fits over a wide q and T range. From the q and T dependence of fitted amplitudes and relaxation times, however, it becomes clear that the fits do not represent a uniform physical pr...

متن کامل

Study of Slow Dynamics in Supercooled Water by Molecular Dynamics and Quasi-Elastic Neutron Scattering

The slow dynamics of supercooled water is studied by modelling the spectrum of test particle fluctuations: intermediate scattering function (ISF). The theoretical models are compared with experimental measurements by quasi-elastic neutron scattering (QENS) and molecular dynamics (MD) simulation results. The dynamics of supercooled water can be decoupled into a product of translational and rotat...

متن کامل

Slow dynamics of supercooled water confined in nanoporous silica materials

We review our incoherent quasielastic neutron scattering (QENS) studies of the dynamics of supercooled water confined in nanoporous silica materials. QENS data were analysed by using the relaxing cage model (RCM) previously developed by us. We first use molecular dynamics (MD) simulation of the extended simple point charge model (SPC/E) for bulk supercooled water to establish the validity of th...

متن کامل

Neutron Scattering Investigations on the Unusual Phase Behavior of Water

Water is the most ubiquitous substance on earth, and is essential to sustain all known forms of life. However, despite centuries of research, a coherent picture of the unusual phase behavior of water is so far lacking. The most promising theory under scrutiny relies on the hypothetical existence of a liquid-liquid phase transition and an associated liquid-liquid critical point hidden in the reg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006